What's New?

soal turunan dan penyelesaian

Pembahasan Soal Turunan Un Sma (2)

Diterbitkan pada Tuesday, 31 July 2012 Pukul 15.47

Pembahasan Soal Turunan UN SMA (2). Jika f(x) = (2x – 1)2 (x + 2), maka f'(x) = … A. 4(2x – 1)(x + 3). B. 2(2x – 1)(5x + 6). C. (2x – 1)(6x + 5). D. (2x – 1)(6x + 11). E. (2x – 1)(6x + 7). PEMBAHASAN : INGAT : f(x) = u.v.

Download Soal Fungsi Turunan Dan...

Diterbitkan pada Tuesday, 24 February 2015 Pukul 18.12

SOAL TURUNAN MATEMATIKA DAN PEMBAHASAN. Soal dan Pembahasan Fungsi Turunan ni diambil dari berbagai sumber, mulai dari soal un matematika, soal sbmptn matematika, soal uas matematika yg sengaja 

Soal Dan Pembahasan Aturan Rantai Turunan

Diterbitkan pada Tuesday, 21 April 2015 Pukul 17.30

Aturan rantai merupakan konsep penyelesaian yang digunakan untuk menentukan turunan suatu fungsi dengan pangkat tertentu ([f(x)]n = y). Fungsi f(x) dapat berupa fungsi aljabar atau trigonometri. Aturan rantai pada 

Pembahasan Soal Turunan Un Sma (1)

Diterbitkan pada Tuesday, 31 July 2012 Pukul 12.29

Pembahasan Soal Turunan UN SMA (1). Jika f(x) = sin2 (2x + π/6), maka nilai f′(0) = … A. 2\sqrt{3}. B. 2. C. \sqrt{3}. D. \frac{1}{2} \sqrt{3}. E. \frac{1}{2} \sqrt{2}. PEMBAHASAN : f(x) = sin2 (2x + π/6). f'(x) = 2 sin (2x + π/6) cos 

Soal Dan Pembahasan Turunan Fungsi Dan Aplikasinya (1-5)

Diterbitkan pada Saturday, 1 June 2013 Pukul 19.08

1. Turunan pertama dari fungsi f(x) = (2-6x)³ adalah? Penyelesaian: Fungsi pada soal berbentuk fungsi lain yang eksponensial. Untuk menentukan turunannya, digunakanlah aturan rantai. Jika f(x) = (u(x))ⁿ maka f ' (x) = n.

Soal Dan Pembahasan Turunan Fungsi Implisit (1-5)

Diterbitkan pada Saturday, 30 November 2013 Pukul 23.40

Fungsi implisit adalah fungsi yang terdiri dari dua atau lebih variabel yakni variabel bebas dan variabel tak bebas, yang berada dalam satu ruas dan tidak bisa dipisahkan pada ruas yang berbeda. Menurunkan fungsi implisit 

Soal Turunan Xi Ipa Dan Pembahasannya

Diterbitkan pada Wednesday, 7 May 2014 Pukul 21.46

1. .Diketahui f(x) = 2x3 + 3x – 4 .Tentukan turunannya Penyelesaian : f(x) = 2x3 +3x-4. f'(x) = 2 . 3x3-1 + 3 . 1x 1-1 -0. f'(x) = 6x2 + 3. 2.Diketahui f'(x) adalah turunan dari f(x) = 5x3 + 2x2 + 6x + 12,tentukan nilai f'(x) adalah.

Soal Dan Pembahasan Turunan Fungsi Logaritma (1-3...

Diterbitkan pada Friday, 25 October 2013 Pukul 23.03

Penyelesaian: turunan-logaritma33. Ingat! Penentuan nilai maksimum dan minimum sebuah fungsi dapat dicari dengan terlebih dahulu menurunkan fungsi dan mencari nilai stationernya. { f'(x) = 0 }. Lihat Pula: Soal dan 

- Halaman ini diberdayakan oleh Google, Bing!, dan Blekko -